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In a previous work [1] we have constructed the functional 

J = II ] (x, Y, *, *x, *u) dx dy 

for which Euler's equation coincides with Crocco's equation, which des- 
cribes the two-dimensional rotational flow of a gas. In this paper we 
shall apply group theoretical methods to the study of  this functional and 
find a group of  transformations which leave tt~s functional invariant. 

Before we proceed to analyze the functional, we note the follow- 
ing property. It is known that the functional is determined by the given 
equation to within divergence-type terms. Since these terms do not af-  
fect Euler's equation, they can be disregarded. Clearly, i f  the func- 
tional admits a certain transformation group G~, that the group will 
automatical ly  leave the corresponding EuIer's equation invariant. In 
what follows we shall see that that group is, in general, a subgroup of 
the group Go, associated with the corresponding Euler's equation. The 
group properties of  an integral were first investigated by Lie, but a 
general method of obtaining conservation laws was given in Noether's 
work [2]. A simpIe and detailed derivation of Noether's theorem (for 
a special case) is given in [3]. Since the theory of integral invariants 
is a special case of  the theory of  differential invariants, aI1 of  the 
theory developed in [4] can be extended to integrals. The derivations 
in this paper apply to an integral of  arbitrary form 

J . . . .  / :r, u, ~ . . . .  , O ~ r ] d ~ , . . d z . .  

Consider the functional 

, 1 /v - i /~  , '7 + t  , I I p . ( ,  ) Y = l l p 0 ( * ) ( t - - V )  \ ~ T ' ~ _ l  V ' ) d x d y =  F (V~) dx dy = 

Here ~ is the stream function, V is the speed, y is the adiabatic ex-  
ponent, P0 is the stagnation density, and the rest of the notation is ob- 
vious. We now proceed to construct a group which leaves the integral 
(1) invaNant. We shall consider the group of  point transformations 

z* = f (z, y, % y* = I ~ (~, y, % ~* = p (~, y, ~). 

We shM1 call the ffmctional (i) invariant with respect to this group if  

D(x) D(x*) 

Let the operator of the one-parameter  subgroup 

0 0 0 
X =  ~ -b~ + ~  N -  + ~ 0-~ 

belong to the group of transformations which leave the functional (1) 
invariant.  The extended operator X* has the form 

0 , 0 
x * = x + ~ p + n - C ~ ,  P=r q=*"" 

The necessary condition for the invariance of the functional (1) with 
respect to the operator X is 

This condition is derived in the following way. The operator X corres- 
ponds to variable transformation, which is close to the unit t ransforma- 

tion, of the one-parameter  subgroup 

x* = ~ + t ~  1, y * = y + t ~  2, ~ * = ~ 2 + t ~ s ,  

p* = p + tq 1, q* = q+t~l 2 

(t is a parameter). Substituting these values in (1) and taking account 
of  terms linear in t only, we obtain 

J * - - J ~ - ! ( !  [X*l't-/(~xa+P~r162 
1 ) 

Since this equality holds for an arbitrary domain, this yields condition 
(3). The sufficiency of this condition is proved, for example,  in Noe- 
ther's work [2J. 

For the functional (1) ]x = fy = O, so that (3) becomes 

~31r + rlltp q_ .q2jq _~ l (~x 1 + ~aP  + ~2 + q~+~) = 0, (4) 

From (1) we find 

~- p0'F, 1~ ___. 2 . ~  PoP (i - -  VD t/(t-~), 1+ 

/q = @ q  (1 ~ V2) 1/(t-v)" (5) 

The coefficients ~l of  the extended operator are given by the formulas 
[4] 

Substituting (5) and (6) in (4), we find 

d In Po ~s ~ + ~x x -+- ~v ~ ~- p (Af.x 3 -I- ~r + q ( Agya 4c F.+ 2) - -  

, (~ --  ~) F (vD 

Since the coefficients ~1, z ,  g~ are independent of pq, we ob- 
tain the following system of equations for the variables g~ by equating 
to zero the coefficients of  various powers of  p, q: 

d In Po 
P 2-~ ( ~  + ~u~), (s) 

~ ,~ - -  ~ = 0, ~+*-- ~ = 0 .  (9) 

Thus, the coefficients gi of  the operator X are determined by the 
system (8), (9). When group-theoretical  methods are applied to dif-  
ferential equations, there often arises the question of a special choice 
of the parametric functions, which may  have an effect on the width 
of the group admitted by the given system of equations [4]. A quite 
analogous question arises in our case. Our functional (1) has, in general, 
two arbitrary functiong Oo and F(V~). The choice of the function P0 is 
connected with the choice of  the  distribution of  entropy among the par- 
ticles, i, e . ,  with a definite class o f  rotational flows, which admits a 
wider group of  transformations. The function F(V ~) can also be regard- 
ed as arbitrary, although we restrict ourselves to the case when it  is 
assumed to be fixed and does not enter the system of  governing equa-  
tions. 

From the first two equations of (9) it is clear that 

~ = ~ (~, y), ~ = ~ (~, y), ~ _- p (~) .  (10) 
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Since gs does not depend on x, y, and gl and g2 do not depend on ~b, 
it follows from (8) that the right and left sides are equal to a constant. 
On the other hand, from the last two equations of (9) it follows that 

1,:,1 . 2 3 ~x ~y = 2~ ,  which finally yields 

d In Po d~ s k 
~s d~ = k, - - ~  ~ -- -~- (k = eonst) (in particular k =  0).(Ii) 

We first consider the case k = 0. This condition can be satisfied when 

(a) P0 ~ const, ~s = eonst, (b) ~ = 0, P0 -~ Po (~b), 

Here pgr is a function of $. Consider case (b), which corresponds to 
rotational flows. The last two equations in (9) yield 

g ~ = g ~ ( u ) ,  p = g ~ ( ~ ) ,  p = 0 .  

From the third equation in (9) we obtain 

The final transformations are then 

x* = x e o s C O - - y s i n o ) + d ~ ,  

y* = z sin o) + y cos~o + d~, ~* = ~p , (12) 

Thus, in the general case of rotational flows the functional (1) is in- 
variant with respect to the group (12). Clearly, this also holds with re- 
spect to Crocco's equation. The meaning of the group (12) is obvious. 

The case (a) can be treated in a quite analogous way. This case 
corresponds to rotationless flows. The final transformation group is 
then 

x* = xCos(o -- ysin~o + di, 

y * - -  x s i n o ) + y c o s ~ o ~ d ~ ,  ~)* = r  (13) 

Thus we have shown that of all two-dimensional flows the potential 
flows have the widest group. This, apparently, is associated with the 
fact that these flows are the most simple. We shall now consider the 
case k ~ 0 and show that in this case there exist rotationaI flows which 
admit a wider group than (12). We differentiate the first equation in 
(11) with respect to ~9 and then, using these equations, we obtain 

a ~lnp0 t ( d l n p o ) ~  (14) 

This has the solution 

do 
Po = (r + d0op ' ( i5)  

Consider again the functional (1). Introduce the new variables 

x* = aox, Y* = aoY, ~*  ~ ao~P ~ bo" 

This transforms the functional (1) into a functional of the same form 

with the function p~(r  = ao2p0(@) 
We shall call two functionals equivalent if the 00 functions satisfy 

the relation 

Plo (~*) = ao2 P0 (r 

Note that if an integral J is invadant with respect to a group G, then 
cJ (e = const) is also invadant with respect to that group. This means 

that f (and consequently P0) is defined to within a constant factor. 
Taking account of this remark and of the equivalence transformation, 
we reduce (15) to the form 

t 
po (*) = -~7" 06 )  

Now from (11) we obtain ~; = --(1/2)k. Let us denote the con- 
stant --k/2 by X. The last two equations in (9) yield 

~ = ~ x + ~ ( y ) ,  ~ = X y 4 - 9  2(x), ~ s = ~ r  

The third equation in (9) yields CxZ _- _~0y.~ Consequently, the 

functions i have the form 

(pl = - -  Aoy + al', ~p~= Aox + a2, 

Finally, we find the following expressions: 

~1 : Lx - -  Aoy -4- al, ~ = )~y 4- Aox + a2, ~3 = L ~ .  

The coefficient k can be taken equal to one, since the operator X is 
defined to within a constant multiplier. The final transformations are 

x* = cx cos ~o - -  cy s in co -}- dh y* = o:  s in o~ @ cy eos o3 -}- d2, 

~p* = cr  (17) 

The identity transformation corresponds to w = d 1 = d 2 = 0, c = 1. 
Thus, for the values of P0 which correspond to (16) we obtain a four- 
termed group of transformations. Group (I7) contains, in addition to 
translations and rotations in the x, y plane, also stretching transforma- 
tions. For given values of P0,, we Can easily find from (16) the entropy 
distribution S = const �9 ln~. Group (16), as well as group (la), con- 
tain four parameters. 

It is known [2, g] that the existence of a r-parameter group for an 
integrai automatically yields r divergence-type relations. When the in- 
tegral has only one independent variable, these relations yield r first 
integrals. The existence of the thiee-paxameter group (12) for the in- 
tegral (1) allows us'to write dowh these divergence-type relations. Two 
of these, as can be easily verified, yield the law of conservation of 
momentum, and the third relation follows from the first two. 

The invadance of the functional (1) with respect to the operator 
X makes it possible to write down ordinary differential equations, which 
can also be obtained from Crocco's equation. Consider, for example, 
the operator 

0 0 0 

which corresponds to w = d 1 = d z = 0 (of. (17)). Its invadanrs are 

J l = x / y = O ,  J 2 = ~ / x .  

ConsequentIy, we can look for a solution in the form ~ = x~(l~). The 
substitution of this expression in Crocco's equation yields the ordinary 
differential equation 

o~" L, - . ' ,  +-Z~- + ( , - ~ r ) o 2 ] =  

(t -- M ~) (t -- V~) "r 
2Tg//O~=(O) 

The solution of this equation represents a rotational flow with velocity 
constant along a ray. Let us assume, formally, that the right side 
equals zero. The left side is a product of two factors. Equating the 
first of these to zero we obtain a uniform flow, and the second yields 
a Prandtl-Meyer flow. In fact, taking the x axis to be in the direction 
of the velocity vector, we have u = V, v = 0, the second factor yields 

= t f M 2 -- 1, and the projection of the velocity on the ray is 

V 
t + ~ ) ~  - a '  

Consider now the relation between the groups O i and G a. Since 
these relations can take many forms, we shall discuss only the most 
characteristic cases. The inclusion G i ~ G a is obvious. We shall con- 
sider the set G a -- G i and shall find out what type of transformations 
it inchades. 

1) The most common case is that in which the set G a -- G i con- 
sists of transformations which give a multiplier in front of the integral 
cturing the transformation of the functional. If the functional 

= f / (~ ,  y, y') 
J dx 

is transformed by the transformation x* = ~ol(x, y), y*= ~(x ,  y) into the 
functional 

J* :: ~ ~ ! (~*, y*. y*')  dx*,  

where X is the group multiplier, then it is obvious that this transforma- 
tion does not belong to G i, but does belong to G a. 
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iAs an example, consider Crocco's equation with S = const. In, 
this case it admits, as can be earily verified, the transformation x* = 
= hx, y*= ky, ~ '  = k~. The corresponding functional, however, 

< = I I  F (VS) dxdy, 
b 

is transformed by this transformation into 

J*,= ~i" II F (V*2) dz* dy* = ~ J,  

and the condition J* = J is not satisfied. Thus, these transformations 
are lost in the transition from the equation to the functional. 

2) Another common ease is that in which Euler's equation admits 
an infinite group. We shall consider three examples. 

a) The functional 

J ~- I f  (~xS-[- ~pu2)dxdy . 

Clearly, this example corresponds to Case (1). 
b) Chaplygin's equation with the corresponding functional It is 

known [4] that if one disregards such trivial transformations as the 
multiplication Of the solution by a constant or the addition to the solu- 
tion of any other solution of Chaplygia's equation, G a is then either a 
one-parameter or a three-parameter group. The corresponding func- 
tional also gives a one- or three-parameter group. Thus, if we ex- 
clude all trivial transformations, we obtain Ga = G i. 

c) The functioaai 

S Vi-4 ~ a~ 
with the obvious linear Euler's equation y" = 0. The extremals of this 

functional are straight lines. The projective transformations 

a:~ + by + e a l z  + b , y  + e l  

x* - -  ao~ "F boy + Co ' Y* -- ao x q- boy + co 

transform straight lines into straight lines and, consequently, transform 
the equation y" = 0 into y*" = 0. These projective transformations be- 
long to the group G a, whereas the group G i for the functional consists 
of the translations in the x, y plane. 

3) Finally, there is a third case, in which the transformation 
from x, y, r to x*, y*, r transforms the quadratic form w = f(x, y, ~, 
~x, r into the form 

to* = L] (:~*, y*, r ~X**, ~2~**) dx*dy* -[- p. div B (z*, y*, ~*) dx*dy ~. 

where k,/~ are group multipliers and B(~, . .  ) is some function. Clearly, 
such transformations belong to the set Ga, since Euler's equation ts 
not changed by the addition of divergence-type terms, but it does 
not belong to the set Gi. 
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